کاوشی در سیر تحول مکاتب سیاست‌گذاری عمومی: از مکاتب سنتی تا تکامل مکتب نظریۀ آشوب

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد مدیریت دولتی دانشکدۀ مدیریت دانشگاه علامه طباطبائی، تهران، ایران

2 دانشجوی دکتری مدیریت دولتی دانشکدۀ مدیریت دانشگاه علامه طباطبائی، تهران، ایران

چکیده

رشتۀ سیاست‌گذاری عمومی در حال گذار به یک مکتب (پارادایم) جدید است که مفروضات مکاتب گذشته را درنوردیده است. از سوی دیگر، مکتب جدید با وجود مفروضات مشخص، هنوز به توسعۀ نظریه‌های خرد و روش‌های کاربردی منجر نشده است. پژوهش حاضر با هدف کاوش سیر تاریخی مکاتب رشتۀ سیاست‌گذاری عمومی، شناسایی مفروضات هریک و نیز انتقادات به این مفروضات، مقایسۀ این مکاتب و مفروضات آنها و در نهایت معرفی مکتب سیاست‌گذاری عمومی جدید انجام گرفته است.روش پژوهش، توصیفی و با رویکرد دیالکتیک برای تحلیل تکامل تاریخی مکاتب سیاست‌گذاری عمومی است و از منابع کتابخانه‌ای و مقالات علمی نشریات معتبر بین‌المللی به‌منظور گردآوری اطلاعات استفاده شده است.بررسی مفروضات کلی پنهان و آشکار مکاتب سیاست‌گذاری عمومی، ظهور مکاتب عقلایی جامع، عقلانیت محدود (تدریجی و رضایت‌بخش) و نظریۀ آشوب در این رشته را نشان می‌دهد که علاوه‌بر ترتیب تاریخی، تقابل دیالکتیکی بین مفروضات هر کدام مشهود است. براساس بررسی متون سیاست‌گذاری‌عمومی می‌توان نظریۀ آشوب را به‌عنوان جدیدترین مکتب  سیاست‌گذاری‌عمومی درنظر گرفت. مهم‌ترین تفاوت مکتب آشوب با سایر مکاتب، نگاه و نحوۀ رویارویی آن با آیندۀ احتمالی است. در نهایت اینکه پیشنهاد‌هایی برای بهبود سیاست‌گذاری عمومی بر اساس مکتب نظریۀ آشوب، ارائه شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation in Evolution of Public Policy making Schools: From Traditional Schools to Chaos Theory

نویسندگان [English]

  • Fattah Sharifzadeh 1
  • Seyed Alireza naghavi hoseini 2
1 department of public administration, faculty of management, allameh tabataba'i university, Tehran, Iran.
2 department of public administration, faculty of management, allameh tabataba'i university, Tehran, Iran,
چکیده [English]

Public policy studies are transitioning in to a new approach (paradigm) that has questioned assumptions of old approaches. New approach has basic assumptions, ideas and beliefs but hasn’t been developed sub theories and applied methods under its assumptions yet. Purpose of this study is to investigating historical course of public policy schools, identifying assumptions of and critics to each school, comparing basic assumptions of each school and finally Introducing new public policy school. The research is descriptive and dialectical method is used to explain historical evolution of policy-making schools. Library resources and scientific journal articles is used to gather required information. Investigating fundamental implicit or explicit assumptions of public policy schools demonstrate dialectical struggle between fundamental assumptions of three schools: comprehensive rationality, bounded rationality (incrementalism and satisficing) and chaos theory. Therefor basic assumptions and beliefs of three schools are compared. Meta-analysis of literature about change in assumptions of policy-making implies that chaos theory is the last paradigm. The most significant difference between chaos theory paradigm and others is in the way it deal with the future. Finally based on chaos theory assumptions, some suggestions are provided for improvement of public policymaking in Iran.

کلیدواژه‌ها [English]

  • public policy
  • comprehensive rationality
  • incrementalism
  • chaos theory
  • future
  1. الف) فارسی

    1. چالمرز، آلن اف (1390). چیستی علم : درآمدی بر مکاتب علم‌‌شناسی فلسفی، ترجمه سعید زیباکلام، تهران: سمت.
    2. پورعزت، علی‌اصغر (1387). مبانی دانش ادارۀ دولت و حکومت، تهران: سمت.
    3. قلی‌پور، رحمت‌اله؛ غلامپور آهنگر، ابراهیم (1389). فرایند سیاست‌گذاری عمومی در ایران، تهران: مرکز پژوهش‌های مجلس شورای اسلامی.

     

    ب) خارجی

    1. Amanatidou, E., Butter, M., Carabias, V., Konnola, T., Leis, M. Saritas, O., Schaper-Rinke, P. and Van Rij, V. (2012). “On concepts and methods in horizon scanning: Lessons from initiating policy dialogues on emerging issues”, Science and Public Policy, 39, pp. 208–221.
    2. Baumgartner, F. R., Green-Pedersen, C., Jones, B. D., Mortensen, P. B., Nuytemans, M. and Walgrave, S. (2009). “Punctuated Equilibrium in Comparative Perspective”, American Journal of Political Science, 53(3), pp.603–620.
    3. Birkland, T. A. (2016). An Introduction to the Policy Process: Theories, Concepts, and Models of Public Policy Making, Routledge, 4th edition.
    4. Bendor, J. (2015). “Incrementalism: Dead yet Flourishing”, Public Administration Review, 75(2), pp.194–205.
    5. Berniker, E. and McNabb, D. E. (2006). “Dialectical Inquiry: A Structured Qualitative Research Method”, The Qualitative Report, 11 (4), pp.643–664.
    6. Butler, M. J. R. and Allen, P. M. (2008). “Understanding Policy Implementation Processes as Self-Organizing Systems”, Public Management Review, 10(3), pp.421-440.
    7. Cairney, P. (2012). “Complexity Theory in Political Science and Public Policy”, Political Studies Review, 10(3), pp.346–358.
    8. Carlsson, L. (2017). “Policy Science at an Impasse: A Matter of Conceptual Stretching”, Politics & Policy, 45(2), pp.148-168.
    9. Chermack, T. J. (2004). “Improving decision-making with scenario planning”, Futures, 36, pp.295–309.
    10. Dane, E. and Pratt, M. G. (2007). “Exploring intuition and its role in managerial decision making”, Academy of Management Review, 32(1), pp.33–54.
    11. Dobuzinskis, L. (1992). “Modernist and Postmodernist Metaphors of the Policy Process: Control and Stability vs. Chaos and Reflexive Understanding”, Policy Sciences, 25(4), pp.355-380.
    12. Dunn, W. N. (2012). Public Policy Analysis, 5th Edition, Routledge.
    13. Dybicz, P. and Pyles, L. (2011). The Dialectic Method: A Critical and Postmodern Alternative to the Scientific Method, Advances in Social Work, 12 (2), pp.301-317.
    14. Faber, J. and Koppelaar, H. (1994). Chaos theory and social science: a methodological analysis, Quality & Quantity, 28, pp.421-433.
    15. Eppel, E., Matheson, A. G. and Walton. M. E. (2011). Applying Complexity theory to New Zealand public policy Principles for Practice, Policy Quarterly, 7(1), pp.47-55.
    16. Edmondsona, D. L., Kerna, F. and Rogge, K. S. (2018). “The co-evolution of policy mixes and socio-technical systems: Towards a conceptual framework of policy mix feedback in sustainability transitions”, Research Policy, in press.
    17. Farazmand. A. (2003). “Chaos and Transformation Theories: A Theoretical Analysis with Implications for Organization Theory and Public Management”, Public Organization Review: A Global Journal, 3, pp.339–372.
    18. Fuerth, L (2009). “Foresight and anticipatory governance”, Foresight, 11(4), pp.14-32.
    19. Habegger, B. (2010). “Strategic foresight in public policy: Reviewing the experiences of the UK, Singapore, and the Netherlands”, Futures, 42, pp.49–58.
    20. Gerrits, L. (2010). Public Decision-Making as Coevolution, Emergence: Complexity & Organization, 12(1), pp.19-28.
    21. Havas, A. Schartinger, D. and Weber, M. (2010). “The impact of foresight on innovation policy-making: recent experiences and future perspectives”, Research Evaluation, 19(2), pp.91–104.
    22. Haynes, P. (2018). “Understanding the influence of values in complex systems-based approaches to public policy and management”, Public Management Review, 20(7), pp.980-996.
    23. Hayward, T. and Preston, J. (1999). “Chaos theory, economics and information: the implications for strategic decision-making”, Journal of Information Science, 25 (3), pp.173–182.
    24. Jones, B. D, Baumgartner, F. R., Breunig, C., Wlezien, C., Soroka, S., Foucault, M., François, A., Green‐Pedersen, C., Koski, C., John, P., Mortensen, P. B., Varone, F. and Walgrave, S. (2009). “A General Empirical Law of Public Budgets: A Comparative Analysis”, American Journal of Political Science, Vol. 53, No 4. Pp. 855–873.
    25. Kiel, L. D. (1994). Managing Chaos and Complexity in Government: A New Paradigm for Managing Change, Innovation, and Organizational Renewal, 1st Edition, Jossey Bass.
    26. Koivisto, R., Kulmala, I. and Gotcheva, N. (2016). “Weak signals and damage scenarios - Systematics to identify weak signals and their sources related to mass transport attacks”, Technological Forecasting & Social Change, 104, pp.180–190.
    27. Konnola, T., Salo, A., Cagnin, C., Carabias V. and Vilkkumaa, E. (2012). “Facing the future: Scanning, synthesizing and sense-making in horizon scanning”, Science and Public Policy, 39, pp.222–231.
    28. Kraft, M. E. (2015). Public Policy; Politics, Analysis, and Alternives. Sage, 5th edition.
    29. Little, A. (2012). “Political Action, Error and Failure: The Epistemological Limits of Complexity”, Political Studies, 60(1), pp.3–19.
    30. Lodge, M. and Wergich, K., (2016). “The Rationality Paradox of Nudge: Rational Tools of Government in a World of Bounded Rationality”, LAW & POLICY, 38(3), pp.250-267.
    31. Mason, R. B. (2008). “Management actions, attitudes to change and perceptions of the external environment: A complexity theory approach”, journal of general management, 34(1), pp.37-53.
    32. McBride, N. (2005). “Chaos theory as a model for interpreting information systems in organizations”, Information Systems Journal, 15, pp.233–254.
    33. Mendonca, S., Cardoso, G. and Caraca, J. (2012). “The strategic strength of weak signal analysis”, Futures, 44, pp.218–228.
    34. Morcol, G. (2005). “Phenomenology of Complexity Theory and Cognitive Science: Implications for Developing an Embodied Knowledge of Public Administration and Policy”, Administrative Theory & Praxis, 27 (1), pp.1-23.
    35. Özeri, B. and Şeker, G. (2013). “complexity theory and public policy: A new way to put new public management and governance in perspective”, The Journal of Faculty of Economics and Administrative Sciences, 18(1), pp.89-102.
    36. Peter, M. K. and Jarratt, D. G. (2015). “The practice of foresight in long-term planning”, Technological Forecasting & Social Change, pp.101, pp.49-61.
    37. Prindle, D. F. (2012). “Importing Concepts from Biology into Political Science: The Case of Punctuated Equilibrium”, Policy Studies Journal, 40(1), pp. 21-43.
    38. Romanelli, E. and Tushman, M. L. (1994). “Organizational Transformation as Punctuated Equilibrium: An Empirical Test””, Academy of Management Journal, 37(5), pp.1141-1166.
    39. Sanderson, I. (2009). Intelligent Policy Making for a Complex World: Pragmatism, Evidence and Learning”, Political Studies, 57(4), pp.699–719.
    40. Sanial, G. (2015). “Exploring U.S. Coast Guard organizational preparedness through chaos and complexity theories”, Emergence: Complexity & Organization, pp.1-17.
    41. Schoemaker, P. J. H., Day, G. S. and Snyder, S. A. (2013). “Integrating organizational networks, weak signals, strategic radars and scenario planning”, Technological Forecasting & Social Change, 80, pp.815–824.
    42. Scott, W. R. & Davis, G. F. (2008). Organizations and Organizing: Rational, Natural and Open Systems Perspectives, Pearson Prentice Hall.
    43. Shafritz, J. M. & Borick, C. (2009). Introducing Public Policy, Longman.
    44. Simon, H. A. (1955). “A behavioral model of rational choice”, The Quarterly Journal of Economics, 69(1), pp.99-118.
    45. Simon, H.A. (1972). Theories of bounded rationality, in McGuire C.B. and Roy Radner, eds., Decision and organization, Amsterdam, North Holland Pub.
    46. Speakman, M. & Sharpley R. (2012). “A chaos theory perspective on destination crisis management: Evidence from Mexico”, Journal of Destination Marketing & Management, 1, pp.67–77.
    47. Stacey, R. (1993). Strategy as Order Emerging from Chaos, Long Range Planning, 26(l), pp.10–17.
    48. Van Buuren, A. & Gerrits, L. (2008). “Decisions as Dynamic Equilibriums in Erratic Policy Processes”, Public Management Review, 10(3), pp.381-399.
    49. Van de Ven, A.H. & Poole, M. S. (1995). Explaining Development and Change in Organization, Academy of Management Review, 20 (3), pp.510-540.
    50. Wilson, W. (1887). The study of administration, political science quarterly, 2(2), pp.197-222.
    51. Wright, G. & Goodwin, P. (2009). “Decision making and planning under low levels of predictability: Enhancing the scenario method”, International Journal of Forecasting, 25, pp.813–825.